
Chapter 11: Outputting non-HTML content http://www.djangobook.com/en/beta/chapter11/

1 di 15 14/04/2007 16.17

The Django Book « previous ◊ table of contents ◊ next »

Chapter 11: Generating non-HTML content

Usually when we talk about developing web sites, we’re talking about producing some flavor of HTML. Of course,
there’s a lot more to the web than HTML, though; we use the web to distribute all kinds of content, not just
HTML.

Until this point, we’ve focused just on the common case of HTML production, but in this chapter we’ll take a
detour and look at using Django to produce other types of content.

Django has convenient built-in tools that you can use to produce some common non-HTML content:

RSS/Atom syndication feeds.

Sitemaps — consumed by Google, Yahoo and Microsoft’s search engines.

JSON and XML serialized representations of models (usually used for AJAX functions).

We’ll cover each of those tools a little later on, but first, some basics.

The basics

Remember this from Chapter 3?

A view function, or view for short, is simply a Python function that takes a Web request and
returns a Web response. This response can be the HTML contents of a Web page, or a redirect,
or a 404 error, or an XML document, or an image…or anything, really.

More formally, a Django view function must:

Accept an HttpRequest instance as its first argument, and

return an HttpResponse instance.

The key to returning non-HTML content from a view lies in the HttpResponse class, and specifically the

mimetype constructor argument. By tweaking the mime-type, we can indicate to the browser that we’ve

returned an object of a different type.

For a very simple example, let’s look at a view that returns a PNG image. To keep things simple, we’ll just read
the file off the disk:

from django.http import HttpResponse

def my_image(request):

 image_data = open("/path/to/my/image.png", "rb").read()

 return HttpResponse(image_data, mimetype="image/png")

That’s it! If you replace the image path in the open() call with a path to a real image, you can use this very

simple view to serve an image, and the browser will display it correctly.

The other important thing to keep in mind is that HttpResponse objects implement Python’s standard file API.

This means that you can pass in an HttpResponse instance to any place Python (or a third-party library) expects

a file.

For an example of how that works, let’s take a look at producing CSV with Django.

Producing CSV

2

2

7

2

2

2

1

2

Chapter 11: Outputting non-HTML content http://www.djangobook.com/en/beta/chapter11/

2 di 15 14/04/2007 16.17

CSV is a simple data format usually used by spreadsheet software. It’s basically a series of table rows, with each
cell in the row separated by commas (CSV stands for “Comma Separated Values”). For example, here’s a list of
the number of “unruly” airline passengers over the last 10 years, as compiled by the FAA:

Year,Unruly Airline Passengers

1995,146

1996,184

1997,235

1998,200

1999,226

2000,251

2001,299

2002,273

2003,281

2004,304

2005,203

Note

See http://www.faa.gov/data_statistics/passengers_cargo/unruly_passengers/ for the source of
this data.

Unfortunately, CSV It’s not a format that’s ever been formally defined; different pieces of software produce and
consume different variants of CSV, making it a bit tricky to use. Luckily, Python comes with a standard CSV
library, csv, that is pretty much bulletproof.

The key to using this library with Django is that the csv module’s CSV-creation capability acts on file-like

objects, and Django’s HttpResponse objects are file-like objects:

import csv

from django.http import HttpResponse

Number of unruly passengers each year 1995 - 2005

UNRULY_PASSENGERS = [146,184,235,200,226,251,299,273,281,304,203]

def unruly_passengers_csv(request):

 # Create the HttpResponse object with the appropriate CSV header.

 response = HttpResponse(mimetype='text/csv')

 response['Content-Disposition'] = 'attachment; filename=unruly.csv'

 # Create the CSV writer using the HttpResponse as the "file"

 writer = csv.writer(response)

 writer.writerow(['Year', 'Unruly Airline Passengers'])

 for (year, num) in zip(range(1995, 2006), UNRULY_PASSENGERS):

 writer.writerow([year, num])

 return response

The code and comments should be pretty clear, but a few things deserve a mention:

The response is given the text/csv mime-type. This tells browsers that the document is a CSV file, rather

than an HTML file.

The response gets an additional Content-Disposition header, which contains the name of the CSV file.

This header (well, the “attachment” part) will instruct the browser to prompt for a location to save the file
(instead of just displaying it). This filename is arbitrary; call it whatever you want. It’ll be used by browsers
in the “Save as…” dialogue

1

4

2

1

1

Chapter 11: Outputting non-HTML content http://www.djangobook.com/en/beta/chapter11/

3 di 15 14/04/2007 16.17

Hooking into the CSV-generation API is easy: Just pass response as the first argument to csv.writer. The

csv.writer function expects a file-like object, and HttpResponse objects fit the bill.

For each row in your CSV file, call writer.writerow, passing it an iterable object such as a list or tuple.

The CSV module takes care of quoting for you, so you don’t have to worry about escaping strings with
quotes or commas in them. Just pass information to writerow(), and it’ll do the right thing.

You’ll usually repeat this pattern — create an HttpResponse response object (with a special mime-type), pass it

to something expecting a file, then return the response — any time you generate non-HTML content.

Let’s look at a few more examples:

Generating PDFs

PDF (Portable Document Format) is a format developed by Adobe that’s used to represent printable documents,
complete with pixel-perfect formatting, embedded fonts, and 2D vector graphics. You can think of a PDF
document as the digital equivalent of a printed document; indeed, PDFs are usually used when you need to give
a document to someone else to print.

You can easily generate PDFs with Python and Django thanks to the excellent excellent open-source ReportLab
library (http://www.reportlab.org/rl_toolkit.html).

The advantage of generating PDF files dynamically is that you can create customized PDFs for different purposes
— say, for different users or different pieces of content.

For example, we used Django and ReportLab at KUSports.com to generate customized, printer-ready NCAA
tournament brackets for people participating in a March Madness (college basketball) contest.

Installing ReportLab

Before you do any PDF generation, however, you’ll need to install ReportLab. It’s usually pretty simple: just
download and install the library from http://www.reportlab.org/downloads.html.

The user guide (not coincidentally, a PDF file) at http://www.reportlab.org/rsrc/userguide.pdf has additional help
on installation.

Note

If you’re using a modern Linux distribution, you might want to check your package management
utility before installing ReportLab by hand; most package repositories have added ReportLab.

For example, if you’re using the (excellent) Ubuntu distribution, a simple
aptitude install python-reportlab will do the trick nicely.

Test your installation by importing it in the Python interactive interpreter:

>>> import reportlab

If that command doesn’t raise any errors, the installation worked.

Writing your view

Again, key to generating PDFs dynamically with Django is that the ReportLab API acts on file-like objects, and
Django’s HttpResponse objects are file-like objects.

Here’s a “Hello World” example:

2

2

1

1

3

4

3

2

1

Chapter 11: Outputting non-HTML content http://www.djangobook.com/en/beta/chapter11/

4 di 15 14/04/2007 16.17

from reportlab.pdfgen import canvas

from django.http import HttpResponse

def hello_pdf(request):

 # Create the HttpResponse object with the appropriate PDF headers.

 response = HttpResponse(mimetype='application/pdf')

 response['Content-Disposition'] = 'attachment; filename=hello.pdf'

 # Create the PDF object, using the response object as its "file."

 p = canvas.Canvas(response)

 # Draw things on the PDF. Here's where the PDF generation happens.

 # See the ReportLab documentation for the full list of functionality.

 p.drawString(100, 100, "Hello world.")

 # Close the PDF object cleanly, and we're done.

 p.showPage()

 p.save()

 return response

Like above, a few notes are in order:

Here we use the application/pdf mime-type. This tells browsers that the document is a PDF file, rather

than an HTML file. If you leave this off, browsers will probably interpret the output as HTML, which will
result in scary gobbledygook in the browser window.

Hooking into the ReportLab API is easy: Just pass response as the first argument to canvas.Canvas. The

Canvas class expects a file-like object, and HttpResponse objects fit the bill.

All subsequent PDF-generation methods are called on the PDF object (in this case, p) — not on response.

Finally, it’s important to call showPage() and save() on the PDF file (or else you’ll end up with a corrupted

PDF file).

Complex PDFs

If you’re creating a complex PDF document with ReportLab, consider using the cStringIO library as a temporary

holding place for your PDF file. The cStringIO library provides a file-like object interface that is particularly

efficient (much more so than the naive HttpResponse-as-file implementation).

Here’s the above “Hello World” example rewritten to use cStringIO:

1

3

Chapter 11: Outputting non-HTML content http://www.djangobook.com/en/beta/chapter11/

5 di 15 14/04/2007 16.17

from cStringIO import StringIO

from reportlab.pdfgen import canvas

from django.http import HttpResponse

def hello_pdf(request):

 # Create the HttpResponse object with the appropriate PDF headers.

 response = HttpResponse(mimetype='application/pdf')

 response['Content-Disposition'] = 'attachment; filename=hello.pdf'

 buffer = StringIO()

 # Create the PDF object, using the StringIO object as its "file."

 p = canvas.Canvas(buffer)

 # Draw things on the PDF. Here's where the PDF generation happens.

 # See the ReportLab documentation for the full list of functionality.

 p.drawString(100, 100, "Hello world.")

 # Close the PDF object cleanly.

 p.showPage()

 p.save()

 # Get the value of the StringIO buffer and write it to the response.

 response.write(buffer.getvalue())

 return response

Other possibilities

There’s a whole world of other types of content you can generate in Python. Here are a few more ideas, and
some pointers to libraries you could use to implement them:

Generating ZIP files: Python’s standard library ships with the zipfile module, which can both read and

write compressed ZIP files. You could use it to provide on-demand archives of a bunch of files, or perhaps
compress large documents when requested. You could similarly produce TAR files using the standard library
tarfile module.

Dynamic image generation: the Python Imaging Library (http://www.pythonware.com/products/pil/) is a
fantastic toolkit for producing images (PNG, JPEG, GIF, and a whole lot more). You could use it to
automatically scale down images into thumbnails, composite multiple images into a single frame, or even
do web-based image processing.

Plots and charts: there are a number of incredibly powerful Python plotting and charting libraries you
could use to produce on-demand maps, charts, plots, and graphs. We can’t possibly list them all, so here
are a couple of the highlights:

matplotlib (http://matplotlib.sourceforge.net/), which can be used to produce the type of high-quality

plots usually generated with MatLab or Mathematica.

pygraphviz (https://networkx.lanl.gov/wiki/pygraphviz), an interface to the Graphviz graph layout

toolkit (http://graphviz.org/), used for generating structured diagrams of graphs and networks.

In general, any Python library capable of writing to a file can be hooked into Django; the possibilities really are
endless.

Now that we’ve looked at the basics of generating non-HTML content, let’s step up a level of abstraction. Django
ships with some pretty nifty built-in tools for generating some common types of non-HTML content.

The syndication feed framework

1

21

1

1

Chapter 11: Outputting non-HTML content http://www.djangobook.com/en/beta/chapter11/

6 di 15 14/04/2007 16.17

Django comes with a high-level syndication-feed-generating framework that makes creating RSS and Atom
feeds easy.

What’s RSS? What’s Atom?

RSS and Atom are both XML-based formats you can use to provide automatically updating “feeds”
of your site’s content. Read more about RSS at http://www.whatisrss.com/, and more about Atom
at http://www.atomenabled.org/.

To create any syndication feed, all you have to do is write a short Python class. You can create as many feeds as
you want.

Django also comes with a lower-level feed-generating API. Use this if you want to generate feeds outside of a
Web context, or in some other lower-level way.

The high-level framework

Overview

The high-level feed-generating framework is a view that’s hooked to /feeds/ by default. Django uses the

remainder of the URL (everything after /feeds/) to determine which feed to output.

To create a feed, just write a Feed class and point to it in your URLconf (see Chapters 3 and 8 fore more about

URLconfs).

Initialization

To activate syndication feeds on your Django site, add this line to your URLconf:

(r'^feeds/(?P<url>.*)/$', 'django.contrib.syndication.views.feed', {'feed_dict': feeds}),

This tells Django to use the RSS framework to handle all URLs starting with "feeds/". (You can change that

"feeds/" prefix to fit your own needs.)

This URLconf line has an extra argument: {'feed_dict': feeds}. Use this extra argument to pass the

syndication framework the feeds that should be published under that URL.

Specifically, feed_dict should be a dictionary that maps a feed’s slug (short URL label) to its Feed class.

You can define the feed_dict in the URLconf itself. Here’s a full example URLconf:

from django.conf.urls.defaults import *

from myproject.feeds import LatestEntries, LatestEntriesByCategory

feeds = {

 'latest': LatestEntries,

 'categories': LatestEntriesByCategory,

}

urlpatterns = patterns('',

 # ...

 (r'^feeds/(?P<url>.*)/$', 'django.contrib.syndication.views.feed',

 {'feed_dict': feeds}),

 # ...

)

The above example registers two feeds:

The feed represented by LatestEntries will live at feeds/latest/.

The feed represented by LatestEntriesByCategory will live at feeds/categories/.

1

1

1

5

1

Chapter 11: Outputting non-HTML content http://www.djangobook.com/en/beta/chapter11/

7 di 15 14/04/2007 16.17

Once that’s set up, you just need to define the Feed classes themselves.

Feed classes

A Feed class is a simple Python class that represents a syndication feed. A feed can be simple (e.g., a “site

news” feed, or a basic feed displaying the latest entries of a blog) or more complex (e.g., a feed displaying all
the blog entries in a particular category, where the category is variable).

Feed classes must subclass django.contrib.syndication.feeds.Feed. They can live anywhere in your code

tree.

A simple example

This simple example, taken from chicagocrime.org, describes a feed of the latest five news items:

from django.contrib.syndication.feeds import Feed

from chicagocrime.models import NewsItem

class LatestEntries(Feed):

 title = "Chicagocrime.org site news"

 link = "/sitenews/"

 description = "Updates on changes and additions to chicagocrime.org."

 def items(self):

 return NewsItem.objects.order_by('-pub_date')[:5]

The important things to notice here:

The class subclasses django.contrib.syndication.feeds.Feed.

title, link and description correspond to the standard RSS <title>, <link> and <description>

elements, respectively.

items() is simply a method that returns a list of objects that should be included in the feed as <item>

elements. Although this example returns NewsItem objects using Django’s database API, items() doesn’t

have to return model instances.

You do get a few bits of functionality “for free” by using Django models, but items() can return any type of

object you want.

There’s just one more step. In an RSS feed, each <item> has a <title>, <link> and <description>. We need

to tell the framework what data to put into those elements.

To specify the contents of <title> and <description>, create Django templates (see Chapter 4) called

feeds/latest_title.html and feeds/latest_description.html, where latest is the slug specified in

the URLconf for the given feed.

Note that the .html extension is required.

The RSS system renders that template for each item, passing it two template context variables:

obj
The current object (one of whichever objects you returned in items()).

site
A django.models.core.sites.Site object representing the current site. This is useful for

{{ site.domain }} or {{ site.name }}.

If you don’t create a template for either the title or description, the framework will use the template
"{{ obj }}" by default — that is, the normal string representation of the object.

4

11

1

1

2

Chapter 11: Outputting non-HTML content http://www.djangobook.com/en/beta/chapter11/

8 di 15 14/04/2007 16.17

You can also change the names of these two templates by specifying title_template and

description_template as attributes of your Feed class.

To specify the contents of <link>, you have two options. For each item in items(), Django first tries

executing a get_absolute_url() method on that object. If that method doesn’t exist, it tries calling a

method item_link() in the Feed class, passing it a single parameter, item, which is the object itself.

Both get_absolute_url() and item_link() should return the item’s URL as a normal Python string.

For the LatestEntries example above, we could have very simple feed templates. latest_title.html

contains:

{{ obj.title }}

and latest_description.html contains:

{{ obj.description }}

It’s almost too easy…

A complex example

The framework also supports more complex feeds, via parameters.

For example, chicagocrime.org offers an RSS feed of recent crimes for every police beat in Chicago. It’d be silly
to create a separate Feed class for each police beat; that would violate the DRY (Don’t Repeat Yourself) principle

and would couple data to programming logic.

Instead, the syndication framework lets you make generic feeds that output items based on information in the
feed’s URL.

On chicagocrime.org, the police-beat feeds are accessible via URLs like this:

/rss/beats/0613/ — Returns recent crimes for beat 0613.

/rss/beats/1424/ — Returns recent crimes for beat 1424.

The slug here is "beats". The syndication framework sees the extra URL bits after the slug — 0613 and 1424 —

and gives you a hook to tell it what those URL bits mean, and how they should influence which items get
published in the feed.

An example makes this clear. Here’s the code for these beat-specific feeds:

1

1

1

Chapter 11: Outputting non-HTML content http://www.djangobook.com/en/beta/chapter11/

9 di 15 14/04/2007 16.17

from django.core.exceptions import ObjectDoesNotExist

class BeatFeed(Feed):

 def get_object(self, bits):

 # In case of "/rss/beats/0613/foo/bar/baz/", or other such

 # clutter, check that bits has only one member.

 if len(bits) != 1:

 raise ObjectDoesNotExist

 return Beat.objects.get(beat__exact=bits[0])

 def title(self, obj):

 return "Chicagocrime.org: Crimes for beat %s" % obj.beat

 def link(self, obj):

 return obj.get_absolute_url()

 def description(self, obj):

 return "Crimes recently reported in police beat %s" % obj.beat

 def items(self, obj):

 crimes = Crime.objects.filter(beat__id__exact=obj.id)

 return crimes.order_by('-crime_date')[:30]

Here’s the basic algorithm the RSS framework follows, given this class and a request to the URL
/rss/beats/0613/:

1. The framework gets the URL /rss/beats/0613/ and notices there’s an extra bit of URL after the slug. It

splits that remaining string by the slash character ("/") and calls the Feed class’ get_object() method,

passing it the bits.

In this case, bits is ['0613']. For a request to /rss/beats/0613/foo/bar/, bits would be

['0613', 'foo', 'bar'].

2. get_object() is responsible for retrieving the given beat, from the given bits.

In this case, it uses the Django database API to retrieve the beat. Note that get_object() should raise

django.core.exceptions.ObjectDoesNotExist if given invalid parameters. There’s no try/except around

the Beat.objects.get() call, because it’s not necessary; that function raises Beat.DoesNotExist on

failure, and Beat.DoesNotExist is a subclass of ObjectDoesNotExist. Raising ObjectDoesNotExist in

get_object() tells Django to produce a 404 error for that request.

3. To generate the feed’s <title>, <link> and <description>, Django uses the title(), link() and

description() methods. In the previous example, they were simple string class attributes, but this

example illustrates that they can be either strings or methods. For each of title, link and description,

Django follows this algorithm:

First, it tries to call a method, passing the obj argument, where obj is the object returned by

get_object().

1.

Failing that, it tries to call a method with no arguments.2.

Failing that, it uses the class attribute.3.

4. Finally, note that items() in this example also takes the obj argument. The algorithm for items is the

same as described in the previous step — first, it tries items(obj), then items(), then finally an items

class attribute (which should be a list).

Full documentation on all the methods and attributes of Feed classes is always available from the official Django

documentation; see http://www.djangoproject.com/documentation/syndication/.

Specifying the type of feed

Chapter 11: Outputting non-HTML content http://www.djangobook.com/en/beta/chapter11/

10 di 15 14/04/2007 16.17

By default, feeds produced in by framework use RSS 2.0.

To change that, add a feed_type attribute to your Feed class:

from django.utils.feedgenerator import Atom1Feed

class MyFeed(Feed):

 feed_type = Atom1Feed

Note that you set feed_type to a class object, not an instance. Currently available feed types are:

Feed class Format

django.utils.feedgenerator.Rss201rev2Feed RSS 2.01 (default).

django.utils.feedgenerator.RssUserland091Feed RSS 0.91.

django.utils.feedgenerator.Atom1Feed Atom 1.0.

Enclosures

To specify enclosures, such as those used in creating podcast feeds, use the item_enclosure_url,

item_enclosure_length and item_enclosure_mime_type hooks. For example:

from myproject.models import Song

class MyFeedWithEnclosures(MyFeed):

 title = "Example feed with enclosures"

 link = "/feeds/example-with-enclosures/"

 def items(self):

 return Song.objects.all()[:30]

 def item_enclosure_url(self, item):

 return item.song_url

 def item_enclosure_length(self, item):

 return item.song_length

 item_enclosure_mime_type = "audio/mpeg"

This assumes, of course, you’ve created a Song object with song_url and song_length (i.e. the size in bytes)

fields.

Language

Feeds created by the syndication framework automatically include the appropriate <language> tag (RSS 2.0) or

xml:lang attribute (Atom). This comes directly from your LANGUAGE_CODE setting.

URLs

The link method/attribute can return either an absolute URL (e.g. "/blog/") or a URL with the fully-qualified

domain and protocol (e.g. "http://www.example.com/blog/"). If link doesn’t return the domain, the

syndication framework will insert the domain of the current site, according to your SITE_ID setting.

Atom feeds require a <link rel="self"> that defines the feed’s current location. The syndication framework

populates this automatically, using the domain of the current site according to the SITE_ID setting.

Publishing Atom and RSS feeds in tandem

Some developers like to make available both Atom and RSS versions of their feeds. That’s easy to do with

1

1

1

1

Chapter 11: Outputting non-HTML content http://www.djangobook.com/en/beta/chapter11/

11 di 15 14/04/2007 16.17

Django: Just create a subclass of your feed class and set the feed_type to something different. Then update

your URLconf to add the extra versions.

Here’s a full example:

from django.contrib.syndication.feeds import Feed

from chicagocrime.models import NewsItem

from django.utils.feedgenerator import Atom1Feed

class RssSiteNewsFeed(Feed):

 title = "Chicagocrime.org site news"

 link = "/sitenews/"

 description = "Updates on changes and additions to chicagocrime.org."

 def items(self):

 return NewsItem.objects.order_by('-pub_date')[:5]

class AtomSiteNewsFeed(RssSiteNewsFeed):

 feed_type = Atom1Feed

And the accompanying URLconf:

from django.conf.urls.defaults import *

from myproject.feeds import RssSiteNewsFeed, AtomSiteNewsFeed

feeds = {

 'rss': RssSiteNewsFeed,

 'atom': AtomSiteNewsFeed,

}

urlpatterns = patterns('',

 # ...

 (r'^feeds/(?P<url>.*)/$', 'django.contrib.syndication.views.feed',

 {'feed_dict': feeds}),

 # ...

)

The sitemap framework

Django also comes with a high-level Sitemap generating framework that’s similar to the syndication framework.

A Sitemap is an XML file on your Web site that tells search-engine indexers how frequently your pages change
and how “important” certain pages are in relation to other pages on your site. This information helps search
engines index your site.

For more on Sitemaps, see http://www.sitemaps.org/.

The Django sitemap framework automates the creation of this XML file by letting you express this information in
Python code. To create a sitemap, you just need to write a Sitemap class and point to it in your URLconf.

Installation

To install the sitemap app, follow these steps:

Add 'django.contrib.sitemaps' to your INSTALLED_APPS setting.1.

Make sure 'django.template.loaders.app_directories.load_template_source' is in your

TEMPLATE_LOADERS setting. It’s in there by default, so you’ll only need to change this if you’ve changed that

setting.

2.

2

1

Chapter 11: Outputting non-HTML content http://www.djangobook.com/en/beta/chapter11/

12 di 15 14/04/2007 16.17

Make sure you’ve installed the sites framework (see Chapter 15).3.

Note

The sitemap application doesn’t install any database tables. The only reason it needs to go into
INSTALLED_APPS is so that the load_template_source template loader can find the default

templates.

Initialization

To activate sitemap generation on your Django site, add this line to your URLconf:

(r'^sitemap.xml$', 'django.contrib.sitemaps.views.sitemap', {'sitemaps': sitemaps})

This tells Django to build a sitemap when a client accesses /sitemap.xml.

The name of the sitemap file is not important, but the location is. Search engines will only index links in your
sitemap for the current URL level and below. For instance, if sitemap.xml lives in your root directory, it may

reference any URL in your site. However, if your sitemap lives at /content/sitemap.xml, it may only reference

URLs that begin with /content/.

The sitemap view takes an extra, required argument: {'sitemaps': sitemaps}. sitemaps should be a

dictionary that maps a short section label (e.g., blog or news) to its Sitemap class (e.g., BlogSitemap or

NewsSitemap). It may also map to an instance of a Sitemap class (e.g., BlogSitemap(some_var)).

Sitemap classes

A Sitemap class is a simple Python class that represents a “section” of entries in your sitemap. For example, one

Sitemap class could represent all the entries of your weblog, while another could represent all of the events in

your events calendar.

In the simplest case, all these sections get lumped together into one sitemap.xml, but it’s also possible to use

the framework to generate a sitemap index that references individual sitemap files, one per section. (See
below.)

Sitemap classes must subclass django.contrib.sitemaps.Sitemap. They can live anywhere in your code tree.

For example, let’s assume you have a blog system, with an Entry model, and you want your sitemap to include

all the links to your individual blog entries. Here’s how your sitemap class might look:

from django.contrib.sitemaps import Sitemap

from mysite.blog.models import Entry

class BlogSitemap(Sitemap):

 changefreq = "never"

 priority = 0.5

 def items(self):

 return Entry.objects.filter(is_draft=False)

 def lastmod(self, obj):

 return obj.pub_date

After looking at the syndication framework this should look pretty familiar:

changefreq and priority are class attributes corresponding to <changefreq> and <priority> elements,

respectively. They can be made callable as functions, as lastmod was in the example.

items() is simply a method that returns a list of objects. The objects returned will get passed to any

2

Chapter 11: Outputting non-HTML content http://www.djangobook.com/en/beta/chapter11/

13 di 15 14/04/2007 16.17

callable methods corresponding to a sitemap property (location, lastmod, changefreq, and priority).

lastmod should return a Python datetime object.

There is no location method in this example, but you can provide it in order to specify the URL for your

object. By default, location() calls get_absolute_url() on each object and returns the result.

Sitemap methods/attributes

Like Feed classes, Sitemap members can be either methods or attributes; see the steps under “A complex

example”, above, for more about how this works.

A Sitemap class can define the following methods/attributes:

items (required)

Provides list of objects. The framework doesn’t care what type of objects they are; all that matters is that
these objects get passed to the location(), lastmod(), changefreq() and priority() methods.

location (optional)

Gives he absolute URL for a given object,

Here, “absolute URL” means a URL that doesn’t include the protocol or domain. Examples:

Good: '/foo/bar/'

Bad: 'example.com/foo/bar/'

Bad: 'http://example.com/foo/bar/'

If location isn’t provided, the framework will call the get_absolute_url() method on each object as

returned by items().

lastmod (optional)

The object’s “last modification” date, as a Python datetime object.

changefreq (optional)

How often the object changes. Possible values (as given by the Sitemaps spec) are:

'always'

'hourly'

'daily'

'weekly'

'monthly'

'yearly'

'never'

priority (optional)

A suggested indexing priority, between 0.0 and 1.0. The default priority of a page is 0.5; see the

sitemaps.org documentation for more about how priority works.

Shortcuts

The sitemap framework provides a couple convenience classes for common cases:

FlatPageSitemap
The django.contrib.sitemaps.FlatPageSitemap class looks at all flat pages defined for the current site and

creates an entry in the sitemap. These entries include only the location attribute — not lastmod, changefreq

or priority.

1

Chapter 11: Outputting non-HTML content http://www.djangobook.com/en/beta/chapter11/

14 di 15 14/04/2007 16.17

See Chapter 15 for more about flat pages.

GenericSitemap
The GenericSitemap class works with any generic views (see Chapter 9) you already have.

To use it, create an instance, passing in the same info_dict you pass to the generic views. The only

requirement is that the dictionary have a queryset entry. It may also have a date_field entry that specifies a

date field for objects retrieved from the queryset. This will be used for the lastmod attribute in the generated

sitemap. You may also pass priority and changefreq keyword arguments to the GenericSitemap constructor

to specify these attributes for all URLs.

Here’s an example of a URLconf using both FlatPageSitemap and GenericSiteMap (with the hypothetical Entry

object from above):

from django.conf.urls.defaults import *

from django.contrib.sitemaps import FlatPageSitemap, GenericSitemap

from mysite.blog.models import Entry

info_dict = {

 'queryset': Entry.objects.all(),

 'date_field': 'pub_date',

}

sitemaps = {

 'flatpages': FlatPageSitemap,

 'blog': GenericSitemap(info_dict, priority=0.6),

}

urlpatterns = patterns('',

 # some generic view using info_dict

 # ...

 # the sitemap

 (r'^sitemap.xml$', 'django.contrib.sitemaps.views.sitemap', {'sitemaps': sitemaps})

)

Creating a sitemap index

The sitemap framework also has the ability to create a sitemap index that references individual sitemap files,
one per each section defined in your sitemaps dictionary. The only differences in usage are:

You use two views in your URLconf: django.contrib.sitemaps.views.index and

django.contrib.sitemaps.views.sitemap.

The django.contrib.sitemaps.views.sitemap view should take a section keyword argument.

Here is what the relevant URLconf lines would look like for the example above:

(r'^sitemap.xml$', 'django.contrib.sitemaps.views.index', {'sitemaps': sitemaps})

(r'^sitemap-(?P<section>.+).xml$', 'django.contrib.sitemaps.views.sitemap', {'sitemaps':

This will automatically generate a sitemap.xml file that references both sitemap-flatpages.xml and

sitemap-blog.xml. The Sitemap classes and the sitemaps dictionary don’t change at all.

Pinging Google

You may want to “ping” Google when your sitemap changes, to let it know to reindex your site. The framework
provides a function to do just that: django.contrib.sitemaps.ping_google().

Chapter 11: Outputting non-HTML content http://www.djangobook.com/en/beta/chapter11/

15 di 15 14/04/2007 16.17

« previous ◊ table of contents ◊ next »Copyright 2006 Adrian Holovaty and Jacob Kaplan-Moss.
This work is licensed under the GNU Free Document License.

Note

At the time this book was written, only Google responded to sitemap pings. However, it’s quite
likely that Yahoo and/or Microsoft will soon support these pings as well.

At that time, we’ll likely change the name of ping_google() to something like

ping_search_engines(), so make sure to check the latest sitemap documentation at

http://www.djangoproject.com/documentation/sitemaps/.

ping_google() takes an optional argument, sitemap_url, which should be the absolute URL of your site’s

sitemap (e.g., '/sitemap.xml'). If this argument isn’t provided, ping_google() will attempt to figure out your

sitemap by performing a reverse looking in your URLconf.

ping_google() raises the exception django.contrib.sitemaps.SitemapNotFound if it cannot determine your

sitemap URL.

One useful way to call ping_google() is from a model’s save() method:

from django.contrib.sitemaps import ping_google

class Entry(models.Model):

 # ...

 def save(self):

 super(Entry, self).save()

 try:

 ping_google()

 except Exception:

 # Bare 'except' because we could get a variety

 # of HTTP-related exceptions.

 pass

A more efficient solution, however, would be to call ping_google() from a cron script, or some other scheduled

task. The function makes an HTTP request to Google’s servers, so you may not want to introduce that network
overhead each time you call save().

What’s next?

Next, we’ll continue to dig deeper into all the nifty built-in tools Django gives you. Chapter 12 looks at all the
tools you need to provide user-customized sites: sessions, users, and authentication.

Onwards!

1

1

